Fibroblast Cell Cultivation on Wooden Pulp Cellulose Hydrogels for Cytocompatibility Scaffold Method
نویسندگان
چکیده
Fibroblast cell cultivation method was evaluated by using natural polymers sourced from pulp cellulose in their hydrogel forms. The pulp sourced was offered as an alternative for the preparation of hydrogel films when the cellulose was dissolved in dimethylacetamide/lithium choride (DMAc/LiCl) solution and converted hydrogels having flexible and transparent properties. The cultivation of the fibroblast cells was investigated on the hydrogels obtained in different LiCl concentration in the range of 4 to 12 wt%. Regarding the cytocompatibility, when NIH 3T3 fibroblast cells were used for cell adhesion assays, the growing cells showed higher density and aspect ratio on the hydrogel films than the observed on the commercial polystyrene dish (PS dish) used for cell cultivation. The mechanical and surface tests showed that the hydrogel films had elongation around 20 and 40 %, tensile strength from 48 to 67 N/mm2, and high water content value from 200 to 320 %. The results showed that cell addition and spreading on the hydrogel was higher compared with that in the PS dish used as control. Moreover, according with cell morphology tests, the values of cell area, long axis, and aspect ratio were higher than the registered on PS dish. These exhibited that the cellulose hydrogel films prepared with wooden pulp provided good cytocompatibility for its application in tissue engineering. Fibroblast Cell Cultivation on Wooden Pulp Cellulose Hydrogels for Cytocompatibility Scaffold Method
منابع مشابه
In vitro behavior of silk fibroin-coated calcium magnesium silicate scaffolds
Bioceramic scaffolds such as silicate bioceramics have been widely used for bone tissue engineering. However, their high degradation rate, low mechanical strength and surface instability are main challenges compromising their bioactivity and cytocompatibility which further negatively affect the cell growth and attachment. In this study, we have investigated the effects of silk fibroin coating o...
متن کاملThe proliferation of fibroblast cells on the polycaprolactane-chitosan-tannic acid scaffold
Background and Objective: Tissue engineering is a new method for replacing damaged tissue components in order to improve its function. In this method, a porous scaffold mixed with polysaccharide and synthetic antioxidants is first produced and then stem cells are cultured inside it. In this study, the polycaprolactane-chitosan-tannic acid scaffold was used to reproduce the amount Fibroblast cel...
متن کاملSynthesis of pH Sensitive Hydrogels Based on Poly Vinyl Alcohol and Poly Acrylic Acid
In this research, hydrogels based on poly vinyl alcohol and poly acrylic acid blend were prepared which were cross-linked by applied thermal conditions. Afterward, effects of time and heating on water uptake were investigated. The highest water uptake value exhibited by the sample that was heated for 20 min. at 110 ºC was about 2129% after 4 days at equilibrium state. Hydrogels exhibited p...
متن کاملModulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System
Injectable hydrogels have the great potential for clinical translation of dental pulp regeneration. A recently developed PEG-fibrinogen (PF) hydrogel, which comprises a bioactive fibrinogen backbone conjugated to polyethylene glycol (PEG) side chains, can be cross-linked after injection by photopolymerization. The objective of this study was to investigate the use of this hydrogel, which allows...
متن کاملPreparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration.
Bacterial cellulose (BC) and silk fibroin (SF) are natural biopolymers successfully applied in tissue engineering and biomedical fields. In this work nanocomposites based on BC and SF were prepared and characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). In addition, the investigation of cytocompatibili...
متن کامل